Autonomous Real-Time Testing for Software & Systems

A Six Sigma Approach

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions Thomas M. Fehlmann, Zürich (speaker)

Eberhard Kranich, Duisburg Euro Project Office AG

E: <u>info@e-p-o.com</u> H: www.e-p-o.com Safeware engineering safe and secure software

Speaker & Authors

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Software Models

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

- Modeling Software by
 - → ISO/IEC 20926 IFPUG
 - → ISO/IEC 19761 COSMIC
 - Others that are compliant to ISO/IEC 14143....
- Sizing Software according
 - → Functionality
 - Non-functional Characteristics
 - ➔ Other constraints
- Other models
 - Unknown degree of granularity
 - ➔ Useless for modeling Security

What is an Application?

Transfer Functions

Customer

Orientation

Lean Six Sigma

Agile Processes

Project

Estimations

 Moving Data Groups across application within system boundary

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

A Software Test has

- ➔ Several Test Stories
 - Explaining the Value for the Customer
 - Weighted by Customer's Priority for the Test Story
- A Test Story has
 - ➔ Many Test Cases
 - Exploring different aspects favorable and dismal of the test story
- A Test Case has
 - Test data and test stubs to run the software under test
 - An Outcome
 - Passed: all responses according expectations
 - Failed: at least one test case didn't yield the expected response

What is a Test Case?

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

A Test Case has

- ➔ Entry Data ("Test Data")
 - Explaining the environment for the test case
 - Typically valid, invalid, borderline data
 - Normal and disturbed communication services
- → A known sequence of data movements executed
 - Defining Test Coverage and Test Size
- Test Size
 - Every Test Case has a size: the number of data movements executed by the test
 - Total Test Size is the number of data movements executed by all test cases

Test Coverage

• Percentage of data movements covered with test cases

 $\{x_1, x_2, \dots, x_n\} \to y$

Test Case Measurements

for Test Story Q1-1

What is

its size?

What is a Test Case?

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

Sequence diagrams visualize every test case by its data movements

Test Story No. 1

User Stories

Q1-1 Test Story Q1-1	Q00 ²	1: User Story 1	Q002: User Story 2	Q003: User Story 3		Expected Response	CFP
Q1-1.1 Test Data Q1-1.1	X001	1,W001,E001			\geq	Expected Response Q1-1.1	3
Q1-1.2 Test Data Q1-1.2	X001	1,E002,W001	X006,E007		\leq	Expected Response Q1-1.2	5
Q1-1.3 Test Data Q1-1.3	X005	5,E005,X003	X006,E007	X004,E004	\leq	Expected Response Q1-1.3	7
Test Story Contributio	n (CFP):	9	4	2	\geq	Test Size	15

Functionality, Defect Size, and Defect Density

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

- What happens if data movements don't work as expected, have defects instead?
- Testers mark and count data movements where defects have been detected
- Same Metric:
 - → ISO/IEC 19761 COSMIC

- Functional Size
 - → Number of Data Movements needed to implement required functionality
- Test Size
 - Number of Data Movements executed in Tests
- Test Story
 - → Collection of Test Cases aiming at certain FURs
- Defect Count
 - Number of Data Movements affected by some defect detected in a test story

Flexible

Safe

Weight

31%

20%

39%

11%

Functional Effectiveness

	IoT Topics	Attributes	
FUR	y1 Extensible	Easy to extend IoT	Device independent
	y2 Open	Open Source	Open Interfaces
NFR	y3 Reliable	Open Source Always correct	Always secure
	y4 Fast	No waiting	

Lean Six Sigma

Customer

Orientation

Agile Processes

Project Estimations

Transfer Functions

Establish customer's values regarding
IoT Topics

- Get a profile using Analytic Hierarchy Process (AHP) or other Voice of the Customer technique
- Look at User Stories and count Data Movements that support some IoT Need
 - Each Data Movement can support more than one IoT Need

ro project office

Customer	Test Story	Test Cases Case 1 Test Data	Expected Response	Case 2	Test Dat	ta	Expected Response	Case 3	Test	Data		Exp	ected Response	
Orientation	CT-A.1 Reliable Responses	CT-A.1.1 Enter valid Search String	Return (known) Answer	**********	••••••		Invalid Search String	ouse o	1051	Dutu		Елр		100000
	CT-A.2 Detect Missing Data	CT-A.2.1 Enter valid Search String for No Data	No Data Available	CT-A.2.2	Enter inv	Test Cover	age		Test :	Storie	s			
	CT-A.3 Data Stays Untouched	CT-A.3.1 Enter valid Search String	Return identical Answer	CT-A.3.2	Enter inv	Deployment (Combinator	е		ŋ	hed	e		
Lean Six Sigma		ne data movements I in each test case	that are					Soal Test Coverage	Reliable Responses	Detect Missing Data	Data Stays Untouched	Achieved Coverage		
Agile Processes	, , , , , , , , , , , , , , , , , , ,	support one of the use sed before, count then	•	IS		User Stories		ğ	CT-A.1 Re	CT-A.2 D6	CT-A.3 D8	Ä		
	→ Data r	novements are execut	ed more that	an on	ice	Q001 Search	Data	0.65	5	8	2	0.64		
Project Estimations						Q002 Answer	Questions	0.66	2	6	8	0.66		
	The Prof	ile for User Stories is	s used for			Q003 Keep D	ata Safe	0.39	4	4	2	0.40		
	measurir	ng Test Coverage				I	deal Profile for Test S	Stories:	0.43	0.74	0.51	Converg		
Transfer Functions	→ The C	onvergence Gap indic s cover User Stories	ates how w	ell Te	est	41 Total Te. 0.10 Converg 0.20 Converg	ence Range						0.02	

Privacy & Safety Assessment Categories

Cu	istom	ner
Ori	entat	tion

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

lable 1. Privacy Asses	ssment Categories.
Privacy Needs	Privacy Protection
Value = 0:	Value = 0: No
No privacy. It's public.	protection. It's public.
Value = 1: Disclosure	Value = 1:
is inconvenient	Weak encryption
Value = 2: Disclosure	Value = 2:
can be harmful	Strong encryption
Value = 3: Disclosure	Value = 3:
costs money	Two-way encryption
Value = 4: Disclosure	Value = 4: Data never
makes guilty	leaves system
Value = 5: Disclosure	Value = 5: Container-
threatens lives	protected data

Table 1 Drivery Assessment Cotagorian

Table 2. Safety Assess	ment Categories
Incurrence Probability	Impact
Value = 0%: No risk. It's safe.	Value = 0: None
Value = 20%: Small probability	Value = 1: Low
Value = 40%: Low medium probability	Value = 2: Little
Value = 60%: High medium probability	Value = 3: Medium
Value = 80%: Very high probability	Value = 4: Quite
Value = 100%: Risk incurred already	Value = 5: High

			Model	D) ata N	10	/em	ent T	able
			Elements						
Customer Orientation	Data	Movements		S	, ,			•	
Lean Six Sigma	Name	Label	Data Movement Sub-Process Description	Effect when Private Data is Disclosed	Exposure to Privacy Violation	Privacy	Probability	Impact on Safety	Safety
Cix Cigina	1) E001	Search Criteria	Enter search criteria	2: Harmful	5 Internal	5.0	20%	1: Low	0.0
	 2) R001 3) X001 	Get Result Show Result	See matching results	1: Inconvenient 1: Inconvenient	3 Two-way	3.1 3.1	10% 10%	2: Little 2: Little	0.6
Agila	 3) X001 4) R002 	Nothing Found	Display results Explain that no data matches search criteria	1: Inconvenient	3 Two-way 5 Internal	5.0	10%	2: Little	0.6
Agile Processes	5) X002	Show Error Message	Explain it to the user	1: Inconvenient	5 Internal	5.0	10%	1: Low	0.0
	6) E003	Enable Sensors	Switch IoT network on	2: Harmful	4 Enclosed	4.3	33%	1: Low	0.3
	7) X003	Switch Sensor on	Tell sensor what data to collect	2: Harmful	4 Enclosed	4.3	33%	1: Low	0.3
	8) E002	Sensor Data	Collected data	2: Harmful	4 Enclosed	4.3	33%	1: Low	0.3
Project Estimations	9) W002	Data Recording	Collected data saved to persistent store	4: Makes guilty	5 Internal	5.0	0%	1: Low	0.0
	10) R003	Sensor Statistics	Aggrgated sensor data	2: Harmful	5 Internal	5.0	20%	2: Little	0.6
	11) X004	Dashboard	Show sensor data	1: Inconvenient	5 Internal	5.0	20%	2: Little	0.6
	Add Roy	w Ins Row Del Ro	w Validate Extract SNAP	Priva	acy Index:	5.0	Safe	ty Index:	0.3
Transfer Functions			Model		m Privacy:			~	
			Implementation						

Privacy and Safety Metrics – Consumer Display

Testing Automation

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions What is the purpose of the Convergence Gap?

- → It allows for automated creation of meaningful test cases
- The software provider has only to furnish the user stories and test stories with an initial, potentially incomplete set of

What means"Digitalization"?

test cases

- Products become software-intense
- Products adapt to Customer Needs

How can Things become Intelligent?

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

- Like intelligent beings should, prepare actions by simulating the effects produced when taking them – without actually executing them
 - > This means, execute a software test before putting decisions to actions
 - The decision alternatives are the test cases; actions considered for execution are the test stubs
- Test the outcome of actions
 - Record the test outcomes
 - Assess the effect of decisions
 - Then take actions
- However...

Where do the Tests Cases come from?

Add an IoT Concert

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

- Add sensors and actuators
- Collect data
- Enhance search results by actually observed data

IoT Needs

v1

y2

y3

v4

IoT Needs remain; Functional Effectiveness evolves

Customer Orientation

Lean Six Sigma

Agile Processes

Project **Estimations**

Transfer **Functions**

	IoT Topics	Attributes			Weight	Profile
FUR	y1 Extensible	Easy to extend IoT	Device independent	Flexible	31%	0.57
	y2 Open	Open Source	Open Interfaces		20%	0.36
NFR	y3 Reliable	Always correct	Always secure	Safe	39%	0.71
	y4 Fast	No waiting			11%	0.20

0.11 🔵

Deployment Combinator Answer Questions **Achieved Profile** Keep Data Safe Goal Profile Search Data Q003 Q002 Q001 IoT Needs 2 0.55 Extensible 0.57 2 4 Open 0.36 2 0.46 4 Reliable 0.71 3 3 0.67 4 0.20 0.20 Fast 2 Solution Profile for User Stories: 0.65 0.66 0.39 Convergence Gap

User Stories

27 Data Moves Covered 0.15 Convergence Range 0.20 Convergence Limit

Transfer Functions

Test Coverage for the Full IoT Concert

Customer Orientation	Test Coverage Deployment Combinator	Goal Test Coverage	1 Reliable Responses	.2 Detect Missing Data	Data Stays Untouched	Achieved Coverage	Test Coverage Deployment Combinator	Goal Test Coverage	Reliable Responses	.2 Detect Missing Data	3 Data Stays Untouched	Achieved Coverage	
Lean Six Sigma	User Stories		CT-A.	CT-A.2	CT-A.3		User Stories		CT-A.1	CT-A	CT-A.		
	Q001 Search Data	0.65		8	2	0.64	Q001 Search Data	0.51	23	1	1	0.52	
	Q002 Answer Questions	0.66	2	6	8	0.66	Q002 Answer Questions	0.63	26	11	10	0.60	
Agile	Q003 Keep Data Safe	0.39	4	4	2	0.40	Q003 Keep Data Safe	0.59	23	7	20	0.60	
Processes	Ideal Profile for Tes	st Stories:	0.43	0.74	0.51	Convergence Gap	Ideal Profile fo	⁻ Test Stories	: 0.84	0.37	0.41	Conver	
Project Estimations	41 Total Test Size 0.10 Convergence Range 0.20 Convergence Limit					0.02	<i>138 Total Test Size</i> 0.10 Convergence Range 0.20 Convergence Limit						0.03 🔛

- Automatic selection of additional test cases based on
 - → Same Test Stories
 - Analogous Sensor Entries and Responses
 - → Keep Convergence Gap \rightarrow 0 as the selection criterion

Sample Privacy Evolution

Medium Privacy Index

High Privacy Index

Good Privacy Index

Transfer Functions

19

- · ~

The Fully Extended Test Cases for the IoT Concert

		S												
Test Story	Case 1 T	est Data	Expected Response	Case 2 Test	it Data	Expected Response	Case 3 Test Data	1	Expected Response	Case 4	Test Data		Expect	ed Resp
CT-A.1 Reliable Responses	CT-A.1.1 E	Enter valid Search String	Return (known) Answer	CT-A.1.2 Ente	er invalid Search String	Invalid Search String	CT-A.1.3 Sensor Re	eadings	Retrieved in Database	CT-A.1.4	Transmission	Error	No Data	a available
CT-A.2 Detect Missing Data	CT-A.2.1 E	Enter valid Search String for No D	ata No Data Available	CT-A.2.2 Ente	er invalid Search String	Invalid Search String	CT-A.2.3 Sensor Of	Ŧ	No Data available	CT-A.2.4	Sensor Off		Dashbo	ard Indica
CT-A.3 Data Stays Untouched	СТ-А.3.1 Е	Enter valid Search String	Return identical Answer	CT-A.3.2 Ente	er invalid Search String	Invalid Search String	CT-A.3.3 Enter sam	e String Agair	n Return identical Answer	CT-A.3.4	Transmission	Interference	Data Re	ejected
														ZE
												Prio	rity	Test Si
Case 4 Test L	Data	Expected Response	Case 5 Test Data	Expected Respo	onse Case 6 Te:	st Data	Expected Response	Case 7	Test Data	Expected	Response	Prio. Weight	-	Test Si
Case 4 Test L CT-A.1.4 Transi		······		Expected Respo Dashboard Indica			Expected Response No Action		Test Data Actuator Response	Expected Stored in E			-	Test Si
	smission Error	No Data available	CT-A.1.5 Actuator Enabled		cation CT-A.1.6 Act	uator Off		CT-A.1.7			Database	Weight	Profile	Test Si 72 32

Agile Processes

Customer Orientation

Lean Six Sigma

Project Estimations

- Test intensity now moves towards reliability
 - Quite typical when adding an IoT concert to some existing software
 - → All remains measurable
 - And autonomous things become comparable in terms of safety, privacy, or whatever affects customer's needs

The Issue of Real-Time

Real-Time doesn't mean:

- "If a child runs behind his ball across the street, test whether breaking helps"
- This is too late for testing; only immediate action avoids damage

• Real-Time means:

- If my car drives through a new settlement, not yet on the map, and perceives the possibility of children not taking care for traffic, my car tests the distances for visual detection of obstacles crossing its way, eventually reducing speed
- Autonomous testing is a background process that enables my autonomous car to drive safely through streets, even if an accurate map is missing
- > Autonomous testing starts when something unknown or unexpected is encountered
- Autonomous real-time testing uses some already existing rule set prepared for driving through a settlement that has open access to streets, expecting playing children
- Autonomous Real-time Testing is Learning when Needed, Adapting to new Environments

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Lean Six Sigma

Agile Processes

Project Estimations

- Generate more Test Cases when needed
 - ➔ In real-time; within a limited time frame
 - → Belonging to an existing Test Story
 - ➔ Based on existing test patterns

- Execute autonomous real-time tests in the background
 - Test Results might affect behavior
 - → Results come as by Test Measurements
 - Indicating green-yellow-red depending on Test Results

Unresolved Problems and Weaknesses

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

- The main weakness of the approach is
 - How are data movements associated to specific customer's needs?
 - This is a non-automatic process, depending from developers' expertise about customer's values and business drivers
 - → Agile teams are used to assess business value, but not on the data movement level
- Many data movements serve more than one user story
- Association of data movements to user stories is crucial for creating and evaluating test cases automatically
 - > When establishing Functional Effectiveness, you can trick somewhat
 - → Is this safe for extending Test Cases?
 - → How fast can Artificial Intelligence extend Test Cases and select the right ones?

Customer Orientation

Lean Six Sigma

Agile

Processes

Project

Estimations

Transfer Functions

Unresolved Problems and Weaknesses

- COSMIC counts are not mainstream
 - Important code quality tools such as SonarQube do not (yet) count functional size automatically
 - Testing metrics are virtually unknown
 - Customers do not understand neither size nor test metrics
 - The current hype for autonomous car driving hides the need for safety and privacy
 - Approach is not easily carried over to ISO/IEC 20926 IFPUG Function Points

Lean Six Sigma

Agile Processes

Project Estimations

- Autonomous Real-Time Testing is something immediately needed that will become highly important in the near future
 - → Autonomous cars never will hit the roads without autonomous real-time tests
 - → IoT is bound for failure without autonomous real-time tests
 - → ICT's future is in jeopardy without autonomous real-time tests
- It's a good idea to get acquainted with the concept early enough
 - Autonomous things need Software Metrics!
 - Measure Software Tests!

Questions?

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Customer

Orientation

Lean

Six Sigma

Agile Processes

Project Estimations

Transfer

Functions

New Book on Six Sigma Transfer Functions

Managing Complexity

Uncover the Mysteries with Six Sigma Transfer Functions

Thomas Michael Fehlmann

2017, 394 pages ISBN 978-3-8325-4406-5 Price: 49.00 €

To purchase, please contact the bookselling trade or order online from Logos Press

Logos Verlag Berlin GmbH · Comeniushof – Gubener Str. 47 · D-10243 Berlin

🛛 λογος 🗖 🗖

Tel.: +49 (30) 42 85 10 90 · Fax: +49 (30) 42 85 10 92 · Internet: http://www.logos-verlag.com